If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+z=0
a = 3; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·3·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*3}=\frac{-2}{6} =-1/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*3}=\frac{0}{6} =0 $
| (3+z)(5z+7)=0 | | 8(4x+11)+(-6x)=36 | | x/52/6=4 | | x=0.75x+0.25 | | 1=x/(0.75x+0.25) | | -20=9/5c+32 | | X/m=54/108 | | 0.252x=9+13.87 | | 3-5t=6t-19 | | 34x-270=120 | | 1=x+(1-x)/0.25 | | .1364x+5.54=94.58 | | 0.167x=12+3.15 | | 1=x+0.25(1-x) | | (2x(2x-1)^0.5-2x^2(2x-1)^-0.5)/(2x-1)=0 | | 1=0.75(x)+0.25 | | -640x=-1.6 | | 2|2x-5|=18 | | 1/9y+2=-13 | | 35=8-3h | | X/3-3x+1/2x+2=5-3x | | 2x-15=43-x | | 5(x+5)=-3(4x-3)+3x | | 40-2(t+6)=-2(4-2t) | | 12-2w=8 | | -2(6x+5)=54-2(2x+12) | | -2(6x+5)=54-2)2x+12 | | 3b/7=4 | | 86-2(2p+1)=9(3p-1) | | 2k/9=7/4 | | y-3.8=12.4 | | 4(3a-6)=100-2(a-1) |